	U.G. DEGREE EX FOURTH SEMES	IOMOUS), CHENNAI – 600 034 AMINATION – ALLIED STER – APRIL 2023 ATICS FOR STATISTICS - II
Da	te: 04-05-2023 Dept. No.	Max. : 100 Marks
Tir	ne: 09:00 AM - 12:00 NOON	
	SECT	FION A - K1 (CO1)
	Answer ALL the Questions	(10 x 1 = 10)
1.	Answer the following	
a)	Define bounded sequence.	
b)	What is conditional convergence of a series?	
c)	When do we say that a function is strictly inc	reasing?
d)	What is a derivative of a function at a point?	
e)	Define measure zero.	
2.	Fill in the blanks	
a)	If $A \subset B$ and $B \subset A$ then we can say A B.	
b)	An alternate series is an infinite series whose	terms alternate in .
c)	The oscillation of f over $I, \omega[f, I] =$	
d)	Derivative of a constant function is	
e)	Every countable subset of \mathbb{R} has measure	·
	SECTI	ON A - K2 (CO1)
	Answer ALL the Questions	(10 x 1 =
	10)	
3.	MCQ	
a)	The sequence $\left\{\frac{1}{n}\right\}$ converges to	
	1.0	2.1
	3. 1/4	4. Does not Converge.
b)	The series $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$ is series.	
	1. Conditionally Convergent	2. Divergent
	3. Convergent	4. None of these
c) $f(x) = 2x$ and $g(x) = 0$. Then which of the following is not true.		
	1. $f + g$ is continuous	2. $f - g$ is continuous
	3. fg is continuous	4. $\frac{f}{g}$ is continuous
d)	A differentiable function is	
	1. discontinuous	2. Discontinuous at only one point
	3. Continuous	4. None of these
e)	$\int \cos x dx = _$	
	1. $\sin x$	$2\sin x$
	$3. \cot x$	4. None of these.
4.	True or False	
a)	Every increasing sequence with upper bound converges to a limit point.	
b)	Every absolutely convergent series is conditionally convergent.	
c)	Let $f: \mathbb{R} \to \mathbb{R}$ and $a \in \mathbb{R}$. If f is continuous at	a , then $\omega[f, a] = 0$.
d)	Let $f: \mathbb{R} \to \mathbb{R}$, then $f(x) = 2x$ is a differential	ble function.

e)	Integration can be used to calculate area.		
SECTION B - K3 (CO2)			
	Answer any TWO of the following $(2 \times 10 =$		
	20)		
5.	If $\{s_n\}_{n=0}^{\infty}$ is a sequence of real numbers which converges to <i>L</i> , then show that $\{s_n^2\}_{n=1}^{\infty}$ converges to L^2		
6.	If $\sum_{n=1}^{\infty} a_n$ converges to A and $\sum_{n=1}^{\infty} b_n$ converges to B then show that $\sum_{n=1}^{\infty} a_n + b_n$ converges to $A + B$ and $\sum_{n=1}^{\infty} ca_n$ converges to cA where $c \in \mathbb{R}$		
7.	If f is a non-decreasing function on the bounded open interval (a, b) and f is bounded above on		
	(a,b) then show that $\lim_{x\to b^-} f(x)$ exist also if f is bounded below on (a,b) then show that		
8.	$\lim_{x \to a^+} f(x) \text{ exist.}$		
0.			
(f+g)'c = f'(c) + g'(c)			
SECTION C – K4 (CO3)Answer any TWO of the following(2 x 10 = 20)			
9.	a.) If $\{s_n\}_{n=0}^{\infty}$ is a sequence of non-negative numbers and if $\lim_{n\to\infty} s_n = L$ then prove that $L \ge 0$		
).	a.) If $\{S_n\}_{n=0}$ is a sequence of non-negative numbers and if $\min_{n\to\infty} S_n = L$ then prove that $L \ge 0$ (8 Marks)		
	b.) Determine the limit of the sequence $\left\{\frac{1}{3n^2}\right\}_{n=0}^{\infty}$ (2 Marks)		
10.	Demonstrate that the series $\sum_{n=1}^{\infty} x^n$ converges to $\frac{1}{1-x}$ if $0 < x < 1$ and diverges if $x \ge 1$ and		
	hence determine the $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent or divergent.		
11.			
	1. sin x $2.f(x) = \begin{cases} 0 & if \ x = 0 \\ 1 & otherwise \end{cases}$ 3. $f(x) = x $		
	4. $f(x) = \frac{1}{x}$ 5. $f(x) = \sin(\cos(x))$ 6. $f(x) = \sin x^2$		
	7. $f(x) = \cos^2 x$ 8. $f(x) = 2$ 9. $f(x) = \frac{1}{x+1}$		
	$10. f(x) = x^2$		
12.	State and prove Rolle's theorem.		
SECTION D – K5 (CO4)			
Answer any ONE of the following $(1 \times 20 = 20)$			
13.	a.) Determine the following sets of points in the plane geometrically.		
	1. $A = \{(x, y) x^2 + y^2 = 1\},\$		
	2. $B = \{(x, y) x \le y\},$		
	3. $C = \{(x, y) x + y = 2\}$ (5 Marks)		
	b.) "If A and B are subsets of S, then $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$ " – justify your		
	answer. (15		
	Marks)		
14.	Explain about alternating series and hence prove that, if $\{a_n\}_{n=0}^{\infty}$ sequence of a positive numbers such that		
	1.) $a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge \cdots$ 2.) $\lim_{n \to \infty} a_n = 0$		
	then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ is convergent.		
SECTION E – K6 (CO5)			
	Answer any ONE of the following $(1 \times 20 = 20)$		
15.	State and Prove Taylor's Formula.		
16.	"If $f \in \mathbb{R}[a, b], g \in \mathbb{R}[a, b]$ $f + g \in \mathbb{R}[a, b]$ and $\int_a^b f + g = \int_a^b f + \int_a^b g$ "- Justify your answer.		
L			

\$\$\$\$\$\$\$