LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

U.G. DEGREE EXAMINATION - ALLIED

FOURTH SEMESTER - APRIL 2023
UMT 4403 - MATHEMATICS FOR STATISTICS - II
Date: 04-05-2023
Dept. No.
Max. : 100 Marks
Time: 09:00 AM - 12:00 NOON

SECTION A - K1 (CO1)

	Answer ALL the Questions
1.	Answer the following
a)	Define bounded sequence.
b)	What is conditional convergence of a series?
c)	When do we say that a function is strictly increasing?
d)	What is a derivative of a function at a point?
e)	Define measure zero.
2.	Fill in the blanks
a)	If $A \subset B$ and $B \subset A$ then we can say $A __B$.
b)	An alternate series is an infinite series whose terms alternate in
c)	The oscillation of f over $J, \omega[f, J]=_$
d)	Derivative of a constant function is
e)	Every countable subset of \mathbb{R} has measure.
	.
	SECTION A $-\mathbf{K 2}(\mathbf{C O 1})$

Answer ALL the Questions
($10 \times 1=$
10)
3. $\mathbf{M C Q}$
a) The sequence $\left\{\frac{1}{n}\right\}$ converges to \qquad .

1. 0
2. 1
3. $1 / 4$
4. Does not Converge.
b) The series $1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ is \qquad series.
5. Conditionally Convergent
6. Divergent
7. Convergent
8. None of these
c) $f(x)=2 x$ and $g(x)=0$. Then which of the following is not true.
9. $f+g$ is continuous
10. $f-g$ is continuous
11. $f g$ is continuous
12. $\frac{f}{g}$ is continuous
d) A differentiable function is \qquad .
13. discontinuous
14. Discontinuous at only one point
15. Continuous
16. None of these
e) $\int \cos x d x=$ \qquad
17. $\sin x$
18. $-\sin x$
19. $\cot x$
20. None of these.
21. True or False
a) Every increasing sequence with upper bound converges to a limit point.
b) Every absolutely convergent series is conditionally convergent.
c) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$.If f is continuous at a, then $\omega[f, a]=0$.
d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, then $f(x)=2 x$ is a differentiable function.
e) Integration can be used to calculate area.

SECTION B - K3 (CO2)

Answer any TWO of the following
5. If $\left\{s_{n}\right\}_{n=0}^{\infty}$ is a sequence of real numbers which converges to L, then show that $\left\{s_{n}^{2}\right\}_{n=1}^{\infty}$ converges to L^{2}
6. If $\sum_{n=1}^{\infty} a_{n}$ converges to A and $\sum_{n=1}^{\infty} b_{n}$ converges to B then show that $\sum_{n=1}^{\infty} a_{n}+b_{n}$ converges to $A+B$ and $\sum_{n=1}^{\infty} c a_{n}$ converges to $c A$ where $c \in \mathbb{R}$
7. If f is a non-decreasing function on the bounded open interval (a, b) and f is bounded above on (a, b) then show that $\lim _{x \rightarrow b^{-}} f(x)$ exist also if f is bounded below on (a, b) then show that $\lim _{x \rightarrow a^{+}} f(x)$ exist.
8. If f and g both have derivatives at $c \in \mathbb{R}$,then show that $(f g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$ and $(f+g)^{\prime} c=f^{\prime}(c)+g^{\prime}(c)$

SECTION C - K4 (CO3)

Answer any TWO of the following
($2 \times 10=20$)
9. a.) If $\left\{s_{n}\right\}_{n=0}^{\infty}$ is a sequence of non-negative numbers and if $\lim _{n \rightarrow \infty} s_{n}=L$ then prove that $L \geq 0$
(8 Marks)
b.) Determine the limit of the sequence $\left\{\frac{1}{3 n^{2}}\right\}_{n=0}^{\infty}$
(2 Marks)
10. Demonstrate that the series $\sum_{n=1}^{\infty} x^{n}$ converges to $\frac{1}{1-x}$ if $0<x<1$ and diverges if $x \geq 1$ and hence determine the $\sum_{n=1}^{\infty} \frac{1}{n}$ is convergent or divergent.
11. Categorize the continuous and discontinuous function among the following.

1. $\sin \mathrm{X}$
2. $f(x)= \begin{cases}0 & \text { if } x=0 \\ 1 & \text { otherwise }\end{cases}$
3. $f(x)=|x|$
4. $f(x)=\frac{1}{x}$
5. $f(x)=\sin (\cos (x))$
6. $f(x)=\sin x^{2}$
7. $f(x)=\cos ^{2} x$
8. $f(x)=2$
9. $f(x)=\frac{1}{x+1}$
10. $f(x)=x^{2}$
11. State and prove Rolle's theorem.

SECTION D - K5 (CO4)

Answer any ONE of the following
$(1 \times 20=20)$
13. a.) Determine the following sets of points in the plane geometrically.

1. $\mathrm{A}=\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$,
2. $\mathrm{B}=\{(x, y) \mid x \leq y\}$,
3. $\mathrm{C}=\{(x, y) \mid x+y=2\}$
(5 Marks)
b.) "If A and B are subsets of S , then $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ and $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$ " - justify your answer.
Marks)
4. Explain about alternating series and hence prove that, if $\left\{a_{n}\right\}_{n=0}^{\infty}$ sequence of a positive numbers such that
1.) $a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots$
2.) $\lim _{n \rightarrow \infty} a_{n}=0$
then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}$ is convergent.
SECTION E - K6 (CO5)

Answer any ONE of the following
$(1 \times 20=20)$
15. State and Prove Taylor's Formula.
16. "If $f \in \mathbb{R}[a, b], g \in \mathbb{R}[a, b] f+g \in \mathbb{R}[a, b]$ and $\int_{a}^{b} f+g=\int_{a}^{b} f+\int_{a}^{b} g$ "- Justify your answer.

